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Summary: Prior state-of-the-art method for R(D) estimation Results
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e \What the rate dIStOFtIOn. (R-D) function is to lossy da.ta compression The Blahut-Arimoto (BA) algorithm [Blahut 1972: Arimoto 1972]; article physics  Speec s,”pectrograrnos GAN generated images
what Shannon entropy is to lossless data compression. : . i3 ‘ « 2l
- _ o Solve the unconstrained problem by coordinate-descent on the q Qe (Ve
e Establishing the R-D function has been a hard problem in info theory. _ . VAR e ¥ &
_ . _ variational Lagrangian: V| e i, -
e \We develop ML methods to estimate sandwich bounds on R-D functions: s,y s .
o Can handle general (discrete, continuous, etc.), high-dim data; 0 mi% LQy|x,Qy,A) :=E,upy [KL(QYlX:a;”QY)] + AE[p(X,Y)] o g ~ mzzzz:ig;wyperpﬁor)
o Work by training generative models (e.g. VAEs) on i.i.d. data samples. vy - v N il X v D o  eromt 2l ° e aD)
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e \We estimate R-D sandwich bounds on a variety of real-world data =R 21X Y) =D X
(particle phyS_I,CS’ speech, -|mages), and ass:,ess ophrnahty of SOTA v/ Converges to the global minimum; the associated point (D, R ) z
(neural / traditional) lossy image compression algorithms. converges to a point on R(D) from above. TR jo
|V| ______ e e ,? _____________ X Only works when the data (and reproductions) are finite, and the e Proposed sandwiched region colored in red.
otivation: how far are we from info-theoretic limits" source distribution is known. Neural compression methods in blue/green. .
e ML has made great strides in improving X Otherwise, we will need to discretize and/or estimate source e Blahut-Arimoto no longer feasible in more than 3 o v v o o
lossy data compression performance. raie probabilities by a histogram (runs into the curse of dimensionality)). dimensions: results (when feasible) agree with ours.
. However, any IOSSy CompreSSIOn algorlthm I“ ___________________________________________________________________________________ . _______________________________________________________________ ° NO known algorlthm haS been app“ed at the Scale Of these problems
must face the rate (“avg file size’ A\ Proposed: R(D) upper bound via 3-VAEs . o .
g file size™) and N High-resolution image compression, compared to SOTA methods
distortion (“loss of quality”) tradeoff. R e e Basic idea: keep the objective of the BA algorithm, but do (stochastic) fodak
~ 2021 ' 10
e The R-D function of the data determines the | %P7 ~~<_ 22 gradient descent instead of coordinate descent. * Estimate R-D upper bound of
best R-D tradeoff we can possibly attain, but distorton e Parameterize the variational distributions with neural nets (e.g., flows). n.atural Mages Dy fitting N
it is mostly unknown for real-world data. e Can be reduced to fitting a B-VAE, with p(x|z) e~ Pl@w(2)) hierarchical B-VAEs. = ~ |
___________________________________________________________________________________________________________________________________________________ NELBO = * Resulting bound (blue) £ | et ) e 0 sk
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Background: lossy compression and R(D) E, Px | (QZIX—L”QZ)J] Epy ol . (2))] improving SOTA traditional / —m
Y - ~— Minnen 2018 (hyperprior
=R 2 I(X;2) =D neural compression vy
X —> elelle —> Y - - - erformance by ~ 1 dB PSNR ’ ==
e Claim (Theorem A.3): the point (D, R) lies on an upper bound of the p y ' 02 04 06 08 1012 14
enc dec _ . o . o Rate (BPP, bits per sample per pixel)
data R(D); the upper bound becomes tight in the infinite capacity limit, Malntakeawas """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Xis the data source rv., following Yis the reproduction rv. as long as the decoder is bijective (sufficient condition). . | y - .
Jictribution P /' Works f ¢ or discret ther) data: on| diid | e ML is starting to revolutionize data compression, yet
X orks for cont. or discrete (or neither) data; only need 1.1.d. samples. e we don’t have a good theoretical understanding of neural compression.
Limits of compression — lossless (H[X]) v.s. lossy (R(D)): v/ Converges to a local minimum, yields only an upper bound on R(D). e ML can help bridge the gap between information theory and practice.
Requirement Objective Fundamental Limit | | o o e Fitting a suitable B-VAE to your data naturally yields an upper bound on
lossless compression: X=v minimize EllencX)|] | HX]:= E[-log P(X)] Proposed: R(D) lower bound via Lagrange dual the data R(D), analogous to in lossless compression (bits-back coding).
lossy compression: E[p(X, 1) <D minimize E[lenc(X¥)|] R(D) R(D) is also the solution of constrained maximization over a family of e More expressive VAE = tighter NELBO = tighter upper bound on R(D).
“Ndistortion function p: X' x Y — [0, «) functions [Csiszar 1974]: e R(D) lower bound has been “notoriously hard to obtain” [Riegler et al., 2018],
rate Ei D)= max 1l g g(X)| —AD; but is more useful for assessing optimality of compression algorithms.
R(D) — inf [(X; Y) A e The proposed LB algorithm seems to have sample complexity that is
Qv x:E[p(X,Y)]<D subj to E 'eXP(_AP(Xv ?/))] _ / exp(—Ap(, y)) dPx(z) <1,¥Yy €Y exponential in the intrinsic dimension of the data.
where 9(X) 9(z) e More work is needed to understand if the difficulties are fundamental.
Elp(X,Y)] := /Xxy plz,y) dPxQyx (2, y) % Gist of the proposed lower bound method: References
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transmit data SampleS from PXWIth an average dlStort|0n not exceedlngD . o A feW technical approximations were invo|ved; see paper fOr details. [Riégler et,al., 2-018] Erwin Riegler, Gunther Koliander, and Helmut Bolcskei. “Rate-distortion theory for general sets and measures”. arXiv
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