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Summary: 
● What the rate-distortion (R-D) function is to lossy data compression = 

what Shannon entropy is to lossless data compression.
● Establishing the R-D function has been a hard problem in info theory.
● We develop ML methods to estimate sandwich bounds on R-D functions:

○ Can handle general (discrete, continuous, etc.), high-dim data;
○ Work by training generative models (e.g. VAEs) on i.i.d. data samples.

● We estimate R-D sandwich bounds on a variety of real-world data 
(particle physics, speech, images), and assess optimality of SOTA 
(neural / traditional) lossy image compression algorithms.

Proposed: R(D) upper bound via β-VAEs 

Motivation: how far are we from info-theoretic limits?
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Results

Proposed: R(D) lower bound via Lagrange dual 

Background: lossy compression and R(D)

An upper bound RU(D) tells us 
what kind of performance is 
achievable by some (hypothetical) 
algorithm, but doesn’t tell us how 
to achieve it.

A lower bound RL(D) gives the 
performance ceiling of all lossy 
compression algorithms; helps 
assess the optimality of existing 
algorithms.

Main takeaways
● ML is starting to revolutionize data compression, yet
● we don’t have a good theoretical understanding of neural compression.
● ML can help bridge the gap between information theory and practice.

● Fitting a suitable β-VAE to your data naturally yields an upper bound on 
the data R(D), analogous to in lossless compression (bits-back coding).

● More expressive VAE ≈ tighter NELBO = tighter upper bound on R(D).

● R(D) lower bound has been “notoriously hard to obtain” [Riegler et al., 2018], 
but is more useful for assessing optimality of compression algorithms.

● The proposed LB algorithm seems to have sample complexity that is 
exponential in the intrinsic dimension of the data. 

● More work is needed to understand if the difficulties are fundamental.where

● We make a 
first attempt at 
computing 
stochastic 
lower bounds 
on the 
rate-distortion 
function, R(D), 
in the general 
setting, 
where:
○ the data 

source 
distributio
n can be 
an 
arbitrary 
probability 
measure 
(discrete, 
continuou
s, 
singular, 
etc.); no 
assumptio
n on its 
form is 
made;

○ the data 
source 
can only 
be 
accessed 
via i.i.d. 
samples 
(like in 
real life).

● Based on a 
dual 
characterizati
on of the 
rate-distortion 
function, we 
solve a 
constrained 
maximization 
problem in a 
function space 
(approximated 
by, e.g., 
neural 
networks) 
using 
stochastic 
optimization. 
We give 
correctness 
guarantees of 
the resulting 
lower bound.

● We obtain a 
lower bound 
within 1 bit of 
the true R(D) 
of the 2D 
Gaussian 
source.

● ML has made great strides in improving 
lossy data compression performance.

● However, any lossy compression algorithm 
must face the rate (“avg file size”) and 
distortion (“loss of quality”) tradeoff.

● The R-D function of the data determines the 
best R-D tradeoff we can possibly attain, but 
it is mostly unknown for real-world data.

X     —>    010110     —>    Y
         enc                                             dec

X is the data source r.v., following 
distribution  PX

Y is the reproduction r.v. 

distortion function ρ: 𝓧 × 𝓨 → [0, ∞)

R(D) is “the minimum number of bits (per sample) needed, by any algorithm, to 
transmit data samples from PX with an average distortion not exceeding D”.

Prior state-of-the-art method for R(D) estimation
The Blahut-Arimoto (BA) algorithm [Blahut 1972; Arimoto 1972]:

Solve the unconstrained problem by coordinate-descent on the 
variational Lagrangian:

✓ Converges to the global minimum; the associated point (D, R ) 
converges to a point on R(D) from above.

✘ Only works when the data (and reproductions) are finite, and the 
source distribution is known.

✘ Otherwise, we will need to discretize and/or estimate source 
probabilities by a histogram (runs into the curse of dimensionality)).

:= R  ≥ I(X; Y) := D

Limits of compression – lossless (H[X]) v.s. lossy (R(D)):

● Basic idea: keep the objective of the BA algorithm, but do (stochastic) 
gradient descent instead of coordinate descent.

● Parameterize the variational distributions with neural nets (e.g., flows).
● Can be reduced to fitting a β-VAE, with                                         
NELBO =

● Claim (Theorem A.3): the point (D, R ) lies on an upper bound of the 
data R(D); the upper bound becomes tight in the infinite capacity limit, 
as long as the decoder is bijective (sufficient condition).

✓ Works for cont. or discrete (or neither) data; only need i.i.d. samples.
✓ Converges to a local minimum, yields only an upper bound on R(D).

:= R  ≥ I(X; Z) := D

R(D) is also the solution of constrained maximization over a family of 
functions [Csiszár 1974]:

Gist of the proposed lower bound method: 
● Make the optimization problem unconstrained by reparameterizing g(x).
● An IWAE-style estimator is proposed to obtain a tractable lower bound.
● Represent g(x) by a neural network; train it by (stochastic) grad ascent.
● A few technical approximations were involved; see paper for details.

Particle physics      Speech spectrograms       GAN generated images

High-resolution image compression, compared to SOTA methods

● Estimate R-D upper bound of 
natural images by fitting 
hierarchical β-VAEs.

● Resulting bound (blue) 
suggests theoretical room for 
improving SOTA traditional / 
neural compression 
performance by ~ 1 dB PSNR.

Requirement Objective  Fundamental Limit

lossless compression: X = Y minimize E[|enc(X)|]  H[X] := E[-log P(X)]

lossy compression:  E[ρ(X, Y)] ≤ D minimize E[|enc(X)|]  R(D)

paper: https://arxiv.org/abs/2111.12166
code & data: https://github.com/mandt-lab/RD-sandwich

● Proposed sandwiched region colored in red. 
Neural compression methods in blue/green.

● Blahut-Arimoto no longer feasible in more than 3
dimensions; results (when feasible) agree with ours.

● No known algorithm has been applied at the scale of these problems.

https://arxiv.org/abs/2111.12166
https://github.com/mandt-lab/RD-sandwich

