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Summary: better inference ⇨ better compression
● We identify common approximation gaps in existing neural image compression 

methods based on variational autoencoders (VAEs).
● Viewing data compression as inference with respect to a given decoder, we propose 

to close these approximation gaps with new algorithms based on iterative inference, 
stochastic discrete optimization, and bits-back coding.

● We dramatically improve the performance of an existing competitive compression 
model (Minnen et al., 2018) by changing only the inference method at test time, and 
achieve new state-of-the-art results in lossy image compression.

● Compressing data to a bit-string is an inherently discrete optimization problem:

● SGA: introduces continuous proxy parameters       that get stochastically rounded 
to                                        according to stochastic rounding directions      .

● SGA: optimizes a variational upper bound on the original discrete problem

● Discretization gap is closed by annealing the 
temperature              throughout optimization

Closing the discretization gap (and amortization gap) 
with Stochastic Gumbel Annealing (SGA)

Background: neural lossy data compression 
through variational inference

● Current neural methods compress a data observation x with two steps:
1. An encoder neural net computes its continuous latent representation 
2. A discrete latent representation is obtained by rounding                    , which can 

then be converted to a bit-string and decoded.
● This compression procedure incurs the following rate-distortion cost:

● To enable gradient-based optimization w.r.t. parameters of the encoder network, 
rounding is approximated by adding uniform noise, so the rate-distortion cost 
(approximately) corresponds to a negative ELBO (Evidence Lower BOund):

where 

● Improved compression performance by improving inference at compression time, 
using pre-trained baseline models (Minnen et al., 2018).

● New state-of-the-art lossy image compression performance on Kodak (SGA gave 
15% avg rate savings over neural baseline (Minnen et al., 2018) and BPG) and 
Tecnick (SGA gave 19% avg rate savings over neural baseline (Minnen et al., 
2018), 21% over BPG); lossy bits-back gave an additional 1~2% avg rate savings.

Baseline (inference network), BPP=0.12, PSNR=29.8 Ours, BPP=0.13, PSNR=31.2

Qualitative comparison between the compressed reconstruction of baseline method (left; Minnen et al., 2018) and ours (right) with SGA 
(using the same generative model), for an example Kodak image.

SGA optimization landscape; darker region = lower loss (better); SGA 
samples are colored by temperature (brighter color = lower temperature).
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Results (code repo: https://github.com/mandt-lab/improving-inference-for-neural-image-compression)

Closing the marginalization gap with lossy bits-back 
coding

Motivation: three common approximation gaps
1. Amortization gap: amortized inference is too restrictive compared to iterative 

inference at test time:
2. Discretization gap: the negative ELBO is only a continuous approximation to 

the true rate-distortion cost:
3. Marginalization gap: state-of-the-art compression models also incorporate a 

hyper-prior, where the transmission of hyper-latents incurs an overhead: SGA

Graphical illustration of a hierarchical VAE (a), baseline compression/training procedures (b, c), and proposed SGA (d) and lossy bits-back (e, f) algorithms.

Comparing the true rate-distortion loss and 
discretization gap of SGA against alternative 
iterative inference methods, on Kodak images.

● Key observation: in the hierarchical VAE (see Motivation: marginalization gap), the 
lower level latent representations     are compressed losslessly.

● Therefore we apply bits-back coding to compress     (using hyper-latents     as the 
stochastic latent code), thus approximately coding     under its marginal prior           .

Compression performance comparisons on Kodak against existing baselines. Left: rate-distortion curves. Right: average rate savings (%) 
relative to BPG (state-of-the-art traditional codec). Legend shared; higher values are better in both.
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