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Overview:

e \We apply ideas and techniques from optimal transport to make
advances on a basic problem in information theory — estimating the
rate-distortion (R-D) function from data.

e Our R-D estimator is based on minimizing an appropriate functional in
the space of probability measures, approximated by moving particles.

e \We draw close connections between R-D estimation, entropic optimal
transport, and deconvolution, and leverage the connections to:

o introduce a new class of sources with known solutions to the R-D
problem as test cases for algorithms, and
o derive sample complexity for our R-D / deconvolution estimator.

e \We obtain comparable or improved R-D estimates compared to SOTA
methods based on neural networks [Yang & Mandt 2022; Lei et al. 2023],
while requiring significantly less computation and tuning.

Background: lossy compression and R(D)

In lossy compression, we are given
1. The spaces (“alphabets”) of data and reproductions, (X, ).
2. The source (data) distribution u (a prob. measure) on X.
3. Adistortion function p: X x Y — [0, )

A lossy compression algorithm maps

the source measure y on X to a

reproduction measure v on )/, incurring

e a distortion/transportation cost
(“reconstruction error”) and

e a rate cost (“avg. file size”).
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rate-distortion trade-off?
A: the rate-distortion function R(D).

R(D) = inf
m€ll(p, ): [ pdn<D

Following [Blahut 1972, Arimoto 1972], we work with an equivalent variational
“Lagrangian” representation of R(D):
inf inf
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Connections to EOT and denoising

We show that the Lagrangian R-D problem (1) is equivalent to:

(2) projecting the source measure under an entropic optimal transport
(EOT) cost;

(3) denoising/deconvolving the source by maximume-likelihood.
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[Rigollet and Weed, 2018]
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Thus our algorithm/results transfer across all three problems.

In particular:

o (1)« (2): we leverage sample complexity results for EOT [Mena and
Niles-Weed, 2019] to obtain finite-sample bounds for R-D estimation /
projection under EOT / maximume-likelihood deconvolution;

e (1)« (3): we leverage the solution to the deconvolution problem to
introduce a new class of sources with closed-form R(D) segments.

Proposed: Wasserstein Gradient Descent (WGLC

Let X = Y = R p continuously differentiable. We aim to solve
min L(v),  L(:) € {La(p,"),Lror(p; ")}
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ldea: simulate the gradient flow of £in the 2-Wasserstein space of
probability measures:
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Wasserstein gradient: R?— R

Particle scheme in practice:
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The Wasserstein gradient can be tractably computed by

- Sinkhorn’s algorithm, for £ = Zoor s OF

- Asingle Sinkhorn iteration, for £= £ (orders of magnitude faster!)

Finite-sample bounds for R-D estimation

Given m samples from a ¢?-sub-Gaussian source, the best empirical loss
achievable with n particles converges to the true optimum as follows (e=1/1):
min L(p,v) — min
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Empirical results

e \We compare against other R-D upper bound algorithms:
Blahut-Arimoto [Blahut 1972; Arimoto 1972] and SOTA deep learning
methods RD-VAE [Yang & Mandt 2022] and NERD [Lei et al. 2023].

e For a given per-iteration compute budget, we obtain much faster
convergence and better approximation quality (deconv example):
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Figure 3: Visualizing 1 samples (top left), as
Figure 2: Losses over iterations. Shading corresponds well as the v returned by various algorithms
to one standard deviation over random initializations. compared to the ground truth * (cyan).

e as well as tighter R-D upper bounds:

0 R-D bounds on the MNIST training set physics
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Limitations and future work
e Like NERD ILei et al. 2023], our method can only target an R(D) point

with a rate < log(n) nats/sample, where n = number of particles.
e It remains to be studied how best to convert our R-D estimator into a
practical data communication/compression algorithm.
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