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Overview: 
● We apply ideas and techniques from optimal transport to make 

advances on a basic problem in information theory — estimating the 
rate-distortion (R-D) function from data.

● Our R-D estimator is based on minimizing an appropriate functional in 
the space of probability measures, approximated by moving particles.

● We draw close connections between R-D estimation, entropic optimal 
transport, and deconvolution, and leverage the connections to:
○ introduce a new class of sources with known solutions to the R-D 

problem as test cases for algorithms, and
○ derive sample complexity for our R-D / deconvolution estimator.

● We obtain comparable or improved R-D estimates compared to SOTA 
methods based on neural networks [Yang & Mandt 2022; Lei et al. 2023], 
while requiring significantly less computation and tuning.
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Empirical results

Background: lossy compression and R(D)

Limitations and future work
● Like NERD [Lei et al. 2023], our method can only target an R(D) point 

with a rate ≤ log(n) nats/sample, where n = number of particles. 
● It remains to be studied how best to convert our R-D estimator into a 

practical data communication/compression algorithm.
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X is the data source r.v., following 
distribution PX

Y is the reproduction r.v. 

Connections to EOT and denoising
We show that the Lagrangian R-D problem (1) is equivalent to:

(2) projecting the source measure under an entropic optimal transport 
(EOT) cost; 

(3) denoising/deconvolving the source by maximum-likelihood.

Thus our algorithm/results transfer across all three problems. 
In particular:
● (1) ⟷ (2): we leverage sample complexity results for EOT [Mena and 

Niles-Weed, 2019] to obtain finite-sample bounds for R-D estimation / 
projection under EOT / maximum-likelihood deconvolution;

● (1) ⟷ (3): we leverage the solution to the deconvolution problem to 
introduce a new class of sources with closed-form R(D) segments.

Proposed: Wasserstein Gradient Descent (WGD)
Let 𝓧 = 𝓨 = ℝd, ρ continuously differentiable. We aim to solve

Idea: simulate the gradient flow of ℒ in the 2-Wasserstein space of 
probability measures:

The Wasserstein gradient can be tractably computed by 

- Sinkhorn’s algorithm, for ℒ = ℒEOT , or
- A single Sinkhorn iteration, for ℒ = ℒBA (orders of magnitude faster!)

Requirement Objective  Fundamental Limit

lossless compression: X = Y minimize E[|enc(X)|]  H[X] := E[-log P(X)]

lossy compression:  E[ρ(X, Y)] ≤ D minimize E[|enc(X)|]  R(D)

● We compare against other R-D upper bound algorithms: 
Blahut-Arimoto [Blahut 1972; Arimoto 1972] and SOTA deep learning 
methods RD-VAE [Yang & Mandt 2022] and NERD [Lei et al. 2023].

● For a given per-iteration compute budget, we obtain much faster 
convergence and better approximation quality (deconv example): 

● as well as tighter R-D upper bounds: 

\inf_{\nu \in \mathcal{P}(\mathcal{Y})} \inf_{\pi \in \Pi(\mu, \cdot)} \lambda \int \rho d \pi  +  H(\pi | \mu \otimes \nu)

Working with probability measures can be more efficient/effective than parametric 
function approximation with neural networks. 

Method Optimization 
variable

Descent scheme Works with continuous 
alphabets?

Per-iteration complexity
(m = num source samples 
per mini-batch; n = num 

particles in the 
reproduction space)

BA 
[Blahut 
1972; 

Arimoto 
1972]  

(𝝂, K) 
parameterized 
by tables

coordinate 
descent

Only after discretization 
(runs into the curse of 

dimensionality)

O(m n)

RD-VAE 
[Yang 

and 
Mandt 
2022]   

(𝝂, K) 
parameterized 

by neural 
networks

(stochastic) 
gradient 
descent

Yes O(m n)
+ O(NN size)

NERD 
[Lei et 

al., 
2023]

𝝂 
parameterized 

by neural 
networks

(stochastic) 
gradient 
descent

Yes O(m n)
+ O(NN size)

WGD 
(propose

d)

𝝂 
parameterized 

by particles

Wasserstein 
gradient 
descent

Yes O(m n)
\mathcal{L}_{BA}(P_X, Q_Y) := \inf_{Q_{Y|X}} \lambda \int \rho(x,y) P_X 
Q_{Y|X}(dx,dy) + KL(P_X Q_{Y|X} \| P_X Q_Y)

● The R-D function R(D) determines the 
information-theoretic limit of lossy compression, 
but is unavailable for most data sources.

● Recent work [Yand & Mandt 2022, Lei et al., 2023] 
estimates bounds on R(D) by training neural 
networks; this requires NN architecture 
design/tuning for good results. 

● We seek a network-free approach with minimal 
hyperparameter-tuning.

Finite-sample bounds for R-D estimation
Given m samples from a 𝜎2-sub-Gaussian source, the best empirical loss 
achievable with n particles converges to the true optimum as follows (ϵ=1/𝜆):

In lossy compression, we are given
1. The spaces (“alphabets”) of data and reproductions, (𝓧, 𝓨).
2. The source (data) distribution 𝜇 (a prob. measure) on 𝓧.
3. A distortion function ρ: 𝓧 × 𝓨 → [0, ∞)

Q: what is the best possible 

rate-distortion trade-off?

A: the rate-distortion function R(D).

Following [Blahut 1972, Arimoto 1972], we work with an equivalent variational 
“Lagrangian” representation of R(D):

[Rigollet and Weed, 2018]

Wasserstein gradient:  ℝd
 →  ℝd

R(D) = “the smallest 
possible nats/sample 
required by any algorithm 
to transmit the source with 
reconstruction error ≤ D 
[Shannon 1959]: A lossy compression algorithm maps 

the source measure 𝜇 on 𝓧 to a 
reproduction measure 𝜈 on 𝓨, incurring 
● a distortion/transportation cost 

(“reconstruction error”) and 
● a rate cost (“avg. file size”).

Particle scheme in practice:

(1) (2)

(3)
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